INFLUENCE OF VIBRATIONS (CYCLIC DEFORMATIONS
WITH LARGE AMPLITUDES) UPON THE VISCOELASTIC
PROPERTIES OF A POLYPROPYLENE MELT

G. V. Vinogradov, Yu. G. Yanovskii, UDC 532.135
and A. I. Isaev

The article describes the relation between the cutoff of the long-time section of the relaxation
spectrum and the shear rate for the case of continuous deformations. The correspondence be-
tween the amplitude of the rate of cyclic deformations and the deformation rate was determined
for the case of continuous deformations in stationary flow.

‘The influence of eyclic deformations upon the viscoelastic properties of polymer systems has numer-
ous interesting aspects and has been described in several papers in relation to polymers with fillers [1, 2]
rubbers [3, 4], and polymer solutions [5]. It was shown in [6] that large-amplitude deformations of poly-
isobutylene change a fundamental characteristic of the polymer, namely its relaxation spectrum. The long-
time section of the relaxation spectrum is cut off,

In analogy to the concept of initial viscosity, which is independent of the shear rate at small shear
rates, the relaxation spectrum which is not affected by deformations will be termed initial relaxation spec-
trum. In analogy to the concept of effective viscosity, which depends upon the shear rate, the relaxation
spectrum affected by deformations will be termed effective relaxation spectrum, It was established in [6]
that, in the case of cyclic deformations, the effective relaxation spectrum is uniquely determined by the
deformation rate which is equal to the frequency of the vibrations multiplied by the amplitude of the defor-
mations. A unique correspondence of the form log¥ = log Yimax * loga exists between the deformation
rate ¥max and the shear rate ¥, where a denotes a constant which depends upon the type of the polymer con-
sidered. Thelong-time section of the effective relaxation spectrum resembles the long-time section of the initial
relaxation spectrum, The calculation of the viscoelastic characteristics which are usually determined in inves-
tigations employing continuous deformations canbe made with the linear theory of viscoelasticity, provided that
the initial relaxation spectrum and the dependence of the long-time limit of the effective relaxation spectrum upon
deformation rate or shear rate areknown, The effective viscosity and the coefficient of normal stresses were
calculated in this fashion.

The method of [6] has to be checked on a completely different polymer in order to generalize the meth-
od to linear polymers at temperatures above the vitrification and melting points, Moreover, the data of
Tanner [7], which had been obtained with polyisobutylene solutions in cetane, were used for the generaliza-
tion.

A torsion pendulum and a vibratory rheometer were used in the measurements of the dynamic charac-
teristics. The measurements with the pendulum, which was used in the mode of freely attenuated oscilla-
tions, were made at frequencies between 0.1 and 1 Hz, The pendulum has been described in detail in {8].
The measurements with the vibratory rheometer, which was operated in the induced oscillation mode, were
made at frequencies between 6 and 110 Hz and at various deformation amplitudes, as described in [6]. All
measurements were made at 194°C.

The complex dynamic viscosity n* = n' — in" was measured during cyclic deformations, where 7'
denotes the real component or the so-called dynamic viscosity, and n", the imaginary component. Measure-
ments were made at various deformation amplitudes ¥, and frequencies w = 27f, where f denotes the
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Fig. 1. ) Dependence of the absolute val-
ue of the complex dynamic viscosity upon
the deformation rate for various frequen-
cies (curve 2) and upon the frequency at
small deformation amplitudes (curve 1); II)
dependences of a) the modulus of elasticity

frequencies of the oscillations. The v, values were used
to calculate the deformation rate ¥yay = v,f. The n*
values were used to determine the complex shear modulus
G* = n* X iw = G' + iG" and its components (with G' de-
noting the modulus of elasticity, and G", the modulus of
losses).

The effective viscosity n = 7/¥ was measured along
with the dynamic characteristics, where T and ¥y denote
the tangential stress and the shear rate, respectively.

"Moplen" polypropylene having an initial viscosity
Nmax = 2.5 10 p at 194°C was the main object of the in-
vestigations. The characteristic viscosity of this poly-
propylene was 3.8 at 135°C in decalin. Moreover, Moplen
polypropylene with a lower initial Newtonian viscosity was
used for test calculations,

The viscosity values of polypropylene, which had
been obtained upon continuous polypropylene deformations
in the shear-rate interval between 10~% and 10°-% sec™!,
were taken from [9].

In our ensuing discussion, we assume that the fre-
quency is equivalent to the shear rate in the case of con-
tinuous deformations, Apart from this, a quantitative cor-
relation between the complex viscosity and effective vis-

cosity is used, as well as a quantitative correlation be-
tween the modulus of the losses and the shearing stress.

and b) the modulus of losses upon the defor-
mation rate for various frequencies: 1) w

= 40; 2) 80; 3) 125; 4) 200; 5) 400. n* ex-
pressed in p; w, insec™!; ¥, insec”l G!
and G", in dyne/cm?,

Figure 1, I shows the dependence of the absolute
value of the complex dynamic viscosity upon the deforma-
tion rate for various oscillation frequencies., The quantity
In*| is independent of ¥y ,x at each given frequency, until
¥ max has reached a critical value 7§l, at which the function |n*| = &, (¥ max) Pecomes the envelope., Fig-
ure 1, I shows also the dependence of the absolute value of the complex dynamic viscosity upon the fre-~
quency |n*| = &,(w) for Ypmax < Vinax- The envelope of the curves |n*| = &(¥may) can be combined with
the curve |n*| = &,(w) by transposing the latter curve along the abscissa by the amount loga = 1.3. This
result can be explained as follows. The critical amplitudes and deformations yﬁ’” which correspond to the
transition into the envelope depend only slightly upon the frequency (in the frequency range considered, the
deviations from ¥5¥ amount to 9%). Since ¥max = Yof = Yow/27, the values ¥5/27 can be assumed constant
in a first approximation. This means that ¥ I, . is proportional to w and the envelope |n*| = &,(¥§,;) must
be shifted along the abscissa relative to the function |n*| = ®,(w) or n(¥) by the amount 1og')€r/2 7 = loga.
Interestingly enough, in investigations in which polyisobutylene of low molecular weight was examined, the
corresponding shift along the 10g ¥ymqx axis amounted to 1.9. This means that the quantity @ depends upon
the type of the polymer,

Figure 1, H(a, b) depicts the dependences of the components G' and G" of the complex dynamic mod-
ulus upon the deformation rate for various oscillation frequencies, Two deformation ranges can be dis-
tinguished on the figure: there exists a region in which the moduli are independent of the deformation rate,
and another region in which the absolute values of G' and G" decrease with increasing Vp,,,. The absolute
values of G' and G" increase with increasing frequency in both regions.

Figures 2a and 2b depict the frequency dependence of the components of the complex modulus. The
G' and G" values were obtained with the torsion pendulum in the frequency range 10%2-10%8 sec™!, and
with the vibratory rheometer in the frequency range 10!-6-10%-¢ sec™’. The G" values at low frequencies
were obtained with the flow curve of polypropylene, because the equality T = G" holds for low shear rates
and frequencies, provided that we assume ¥ = w. It follows from the G"(w) dependence considered (curve
1 in Fig. 2b) that the transition region from low frequencies to higher frequencies is not well pronounced.
Increasing frequencies imply that the values pass to the high-elasticity plateau, which is inclined, probably
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Fig. 2. Frequency dependences of a) the modulus of elas-
ticity and b) the modulus of losses. 1) Small-deformation am-
plitudes; 2) deformation-rate amplitude ¥ gy = 10 sec™d; 3)
torsion pendulum; 4 and 5) vibratory rheometer; 6) capillary
viscosimeter. G' and G" expressed in dyne/cmz, and w, in
sec™!,

pH Fig. 3. Initial and effective relaxation
%.Tﬁﬁ spectra of polypropylene (the dashed
5 - '-.\"“‘" T | line denotes the approximation of the
1\ \ initial spectrum; the dash-dot line in-
8\>\ é\ }\ a7 ) dicates lfohe approximation of the effec-
4 tive spectrum): 1) 0.063; 2) 0.2; 3)
\ 0.63; 4) 2.0; 5) 6.3; 6) 20; 7) 63; 8)
4 200. H expressed in dyne/em?; ©, in
g9 sec,

-7 -2 -/ 4

~-

due to polydispersion of the polymer. The modulus of elasticity figures (curve 1 in Fig, 2a) were obtained
only in the plateau region, The vitrification range was not reached in this particular experiment. The
vitrification range is situated at higher frequencies than we could reach in the present work. Curves 2 of
Figs. 2a and 2b were obtained at a deformation rate of 10 sec™. A rather sharp cutoff of the functions
G'(w) and G"(w) corresponds to that deformation rate. Since loga = 1.3, the curves of Figs. 2a and 2b
indicate the components G'(w) and G"{w) of the complex dynamic modulus, which are obtained when a ecyclic
deformation of small amplitudes is superimposed on a continouus deformation with a shear rate of 200
sec”l,

The method of Ninomiya and Ferry [10] was used to calculate the initial relaxation spectrum H;,(©)
from the functions G'(w) and G"(w) which refer to the small-amplitude region of amplitude-independent G!
and G". The initial relaxation spectrum is represented by the solid curve running through the filled circles
in Fig, 3. The effective relaxation spectrum H,(6) was calculated from the data which are represented in
Figs. 2a and 2b by curves 2, in analogy to the calculation of the initial spectrum, The effective relaxa-
tion spectrum is represented by the steep solid curve which runs through the filled squares. It follows
from what has been said above that the effective relaxation spectrum must be equivaleat to the polymer

spectrum in the case of stationary flow, when the shear rate is 200 sec™,

The initial relaxation spectrum is related to the initial Newtonian viscosity Tmagx = Lm7 by the ex-
Y0

pression

i, (0)d0. (1)

nmax =

Sty 8
=

The initial relaxation spectrum was approximated so that Eq. (1) rendered a spectrum corresponding to

the greatest experimentally determined Newtonian viscosity, The approximation is represented in Fig. 3
by two sections of straight lines denoted by dashes. These lines characterize the long-time and average-
time sections of the spectrum, The short-time section of the spectrum was not obtained, because the func-
tion G"(w) was not given on the high-frequency side. The approximated initial relaxation spectrum can be
described by the following functional dependences:

_{ 1.6-10767 1%, 1003 <0< 1007
in =

1.2-10%7021 Q<< 0<C 10138, @

The Nyax value calculated from the approximated spectrum differs by 20% from the experimentally
obtained value. This approximation could be considered adequate for the purposes of the present work.

1055



1ge, gl T
2 [ i
\ 6‘4’:\ . — 2
\ . = . — 3
0 \ N e — 4
wH, T K} =
i N
2 1, \
- Y
5— ! a
3 {L
\ -00-2 -/ 0 / 2 gtilgw
3 A\
1 .
-1 TY

Fig. 4. T) Dependence of the parameters of the conditions de-
termining the cutoff of the long-time part of the effective spec-
tra and II) dependence of the effective viscosity upon the shear
rate and dependence of the absolute value of the complex dy-
namic viscosity upon the frequency at small deformation am-
plitudes. 1) Torsion pendulum; 2, 3) vibratory rheometer; 4)
capillary viscosimeter; the solid line denotes experimental
data, and the dashed line, calculated results, H;expressed in

dyne/cm?; ©,, insec; @, inp; and ¥ and w, in sec™l,

Let us determine the long-time sections of the cutoff or effective relaxation spectra for various ¥ values;
we base our considerations upon the above relation between ¥ and ¥max. The long-time section of the
function He () was approximated by a power function with a constant exponent (equal to ~1.75), i.e., with
the same exponent as the long-time section of the initial spectrum. The approximation for various ¥ val-
ues is indicated by the inclined dash-dot lines which intersect the initial relaxation spectrum at points de-
termined by the relation log (1/0) = log w = logy. The cutoff limits of the Hg(®) spectrum at long relaxa-
tion times are given by points at which the function H on the dotted lines (Fig. 3) becomes-equal to the
smallest H value for the approximated initial relaxation spectrum (unfilled circles). Let us denote the
longest relaxation times of the cufoff relaxation spectra by 9, and the relaxation time corresponding to the
intersection points of the inclined dash-dot lines with the initial approximation spectrum, by ©,. The
equation of the straight lines which describe the long-time section of the effective relaxation spectra is
logH(©) = logHy(1 — 1.75logO(¥). The approximation of the effective relaxation spectra can be stated in
the form

H, = Hy(y)a1%, 0, <0 <0, (3)

1.2:10°070114 0 << 0<0,.

The functions Hy(¥) and ©,(Y) are shown in Fig. 4, I. The 9, values satisfy the condition H,(y)0™ " = 1.2
. 1056_0'114.

With proper consideration of the cutoff of the long-time part of the spectrum at increasing shear rates,
i.e,, with the known He(B) and with Egs. (1) and (3), we can calculate the effective viscosity for various
shear rates. Let us discuss the results of the calculations (see Fig. 4, II). The filled circles indicate the
effective viscosity figures which were experimentally obtained during continuous deformations. The un-
filled circles andfilled triangles denote the experimentally measured absolute values of the complex dynamic
viscosity, The filled squares indicate the absolute values of the complex dynamic viscosity measured dur-
ing cyclic deformations with large amplitudes, the deformation being equivalent to a continuous stationary
flow having the shear rate 200 sec-l. The dashed curve indicates the n(¥) dependence which was obtained
with calculations according to the above-~described method and with the data displayed in Fig. 4, 1I, i.e.,
when Eqgs. (1) and (3) were taken into account in the calculations, It follows from Fig. 4, II that the cutoff
which we introduced in our work for the long-time part of the spectrum can adequately account for the vis-
cous properties of the polymer under non-Newtonian flow conditions. The discrepancybetween the calculated
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Fig. 5. Universal representation of the relaxation time at which the
effective relaxation spectra are cut off. 1) Polyisobutylene; 2 and 3)
polypropylene. ©, and 7y, expressed in dyne/em?

Fig. 6. Dependence of the effective viscosity of a polyisobutylene so-
lution in cetane {7] upon the shear rate (the solid curve refers to ex-
perimental data; the dashed curve, to calculated values). 7 expressed
in p.

and experimental 7(y) values in the region of large ¥ values can be explained by the importance of the short-
time part of the spectrum, which we did not determine at the shear rates considered.

For each critical value of the deformation rate and the corresponding frequency, the deformation
work can be assumed to amount to

E. = 4| q*| (vrax) 0 a2 24108 erg/em®. {(4)
This deformation work is five times greater than that obtained in the case of polyisobutylene [6].

Since ©, characterizes the relaxation time corresponding to the cutoff of the effective relaxation spec-
trum, we may expect that the function 6,(¥) must be a characteristic parameter of the polymer. The ©,(7)
dependences which were plottedinlog—log coordinates with the data of [6] for polyisobutylene and for two
polypropylenes the initial viscosities of which differed by the factor 20, are straight lines with identical
slopes, Coincidence, which can be obtained by appropriately normalizing the straight lines, is of great
interest., Coincidence results when the initial viscosity is chosen as the normalizing parameter. With
this normalization, the quantity 7y,¢/©, is an analog to the modulus for a Maxwellian element with the vis-
cOosity nmax and the relaxation time ©;. When we use the concept of a reduced shear rate, we can plot the
function Ny ax/01 = ¥("may) as shown in Fig. 5. Coincidence of the functions nmax/0; = ¥(Vny 4y for
the various polydisperse polymers indicates that the cutoff of the relaxation spectra of these polymers ex-
tends to Maxwellian elements with equal moduli, when the reduced shear rate is the same. The equation
of the function ”max/ei = \Iﬂ('?nmax) can be written in the form:

6, = 2.8/y. (5)

A universal relaxation spectrum exists for polydisperse linear polymers [11]. It has been shown in
the present work that the cutoff of the relaxation spectra of linear polymers occurs always in the same form
and as described by Eq. (5). In other words, there exists a unique relation between the shear rate in con-
tinuous deformations and the relaxation time corresponding to the cutoff of the relaxation spectrum. This
behavior was predicted in [12, 13], and the present work has established the analytic form of the relation
between the shear rate and the corresponding relaxation time for which a cutoff of the spectra is observed.

Thus, when only the initial relaxation spectrum of the polymers is known, Eq. (5) and the relations
of the linear theory of viscoelasticity can be used to calculate the viscoelastic functions for various shear
rates and for stationary flow conditions., Tanner's data [7] can be used to check the calculation method.
Tanner made his measurements on a polyisobutylene solution in cetane. The initial relaxation spectrum
and the cutoff relaxation spectra were determined in a rather wide interval of shear rates by superimposing
a cyclic deformation with small amplitudes upon the quasi-stationary flow of the polyisobutylene solution in
cetane. The initial relaxation spectrum which had been obtained by Tanner is indicated by the solid line in
the insert of Fig. 6. The initial spectrum was approximated and cut off as shown by the dash-dot lines of
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the figure. The cutoff and the above relationships were thereafter used to calculate the dependence of the
effective viscosity upon the shear rate (dashed line). This dependence agrees strongly with the experimen-
tally obtained dependence (solid curve), We note that Tanner's cutoff relaxation spectra result in the same
dependence of the effective viscosity upon the shear rate.
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